Anthony Kilde

414 26th Street NW Apartment 1, Bemidji, MN 56601

(218) 275-5652 | anthonykilde@outlook.com | https://www.linkedin.com/in/anthonykilde/

SUMMARY STATEMENT

Computer Science graduate with a solid foundation in Object-Oriented Programming (OOP) with interests in Full
Stack .NET development, application development, and software engineering. Proven ability to create immersive
solutions and drive continuous learning through hands-on projects. A proactive collaborator and problem-solver
ready to apply skills in a professional setting.

EDUCATION

SKILLS

WORK EXPERIENCE

ACHIEVEMENTS

PROJECTS

Bachelor of Science in Computer Science, Bemidji State University, Bemidji, MN

C++, C#, Python, Java, JavaScript, Typescript, HTML, CSS, VB, ASP.NET, Azure, Cosmos,
Blob, React, Next.js, Bootstrap, Swift, MySQL, JSON, Visual Studio, Unreal Engine, Xcode

Full-stack Developer, January 2023 — present
OmniReality LLC, Bemidji, MN

e Developed VR experiences utilizing Unreal Engine, Visual Studio, and C++.

e Implemented custom algorithms to control physics and interactions.

e Implemented graphical systems that aided the designers’ workflow.

e Utilized JavaScript, React, Next.js, CSS, HTML, ASP.NET, C#, JSON, Bootstrap,
and Azure Web Apps to deploy and maintain web applications.

Outstanding Student in Computer Science, March 2021, April 2023
Bemidji State University, Bemidji, MN

Presidential Honor Roll, December 2019
Bemidji State University, Bemidji, MN

Web Portfolio — (NextJS, React, .NET, C#, TSX , CSS, HTML, Cosmos, Blob, SAS token)

¢ Dynamic Rendering & Singleton Service: Developed a component-based
architecture in Next.js/React with TypeScript, facilitating parallel data loading
and caching through a singleton service.

e Modular CSS and Ul: Leveraged a modular CSS approach to convert high-
fidelity wireframes into interactive Ul.

e Data Layer & Backend Service: Integrated Azure's Cosmos DB and Blob Storage
for scalability, deploying a secure .NET backend service for interaction with
Cosmos DB and retrieval of Blob links.

e Security Measures: Managed secure direct blob access and cross-origin
requests using short-lived Shared Access Signatures (SAS) and CORS.

Apprise (iOS App)

e Project Lead: Led the development of "Apprise," a real-time academic
communication app.

e User Interface: Collaborated with designers to develop an intuitive and familiar
interface.

e Security Measures: Implemented anti-cheating and user privacy measures,
ensuring secure data transmission.

o Firebase & JSON: Integrated Firebase for real-time updates and offline
functionality, managing data as JSON.

e Dynamic Invites & Access Control: Enabled dynamic classroom invites and
provided role-based access control.

mailto:anthonykilde@outlook.com
https://www.linkedin.com/in/anthonykilde/

PROJECTS 1974 Seeburg Quadraphonic Sound Digital Jukebox VR (Unreal Engine, C++, Python)

e Python Web Scraper: Developed a scraper for song integration.

e C++ Mechanics: Utilized C++ for jukebox's operational components.

e Cross-Language Integration: Bridged Python and C++ for data handling.
e VR Packaging: Packaged application for Oculus compatibility.

Not The North Pole VR (Unreal Engine Game, C++, 3D Math, System Architecture)

e Encapsulation: Created the InstancedSpawnLocationManager class,
encapsulating related data and methods.

e Inheritance: Used inheritance in game classes for diverse enemy behaviors.

e Constructors/Destructors: Utilized these methods to manage resources
effectively, improving game performance.

e Polymorphism: Implemented polymorphic functions in enemy behavior and
spawning.

e Abstraction: Simplified complex operations, like enemy spawning, through
method abstraction.

e Error Handling: Integrated error handling to manage potential issues,
improving game stability.

Python Web Scraper — Kayak.com

e Web Scraping & Automation: Crafted automated Selenium Python scraper for
flight data extraction from Kayak.com, with 4-hour interval schedules.

e Cross-Platform Compatibility: Established dynamic driver setup for Chromium
and Chrome, guaranteeing scraper's OS versatility.

e Data Management and Error Handling: Streamlined data extraction with XPath
and regex. Implemented error handling to maintain data integrity.

e CSV Output: Utilized Python's csv library for automating data output into CSV
files, enabling easy analysis and manipulation.

Python Web Scraper — Youtube.com

e Automation: Automated scraping YouTube, downloading, and audio
conversion process, streamlining batch operations.

e Web Scraping: Used Selenium WebDriver for browser automation, efficiently
fetching user-specified songs from YouTube.

e User Interface: Integrated the tkinter library for file and directory dialogues,
enhancing user interaction with the system.

e Exception Handling: Implemented robust error handling and utilized explicit
waits to ensure stability and speed of web scraping operations.

e Browser Automation Options: Added a headless browser operation feature,
improving efficiency and server compatibility.

e File Handling: Developed functionality to manage song lists using .txt files, with
the system effectively reading and interpreting the provided song lists

e Audio Conversion: Utilized ffmpeg and youtube-dl libraries to
download/convert YouTube videos into WAV format.

